China Custom Factory Custom Made as Drawing Parts Small Electric Motor Pto Shaft Pto Spline Shaft

Product Description

Application

• Agricultural equipment

• Armament

• Automobile industry

• Computing equipment

• Medical / dental instruments

• Measuring instruments

•Miscellaneous equipment

•Pharmaceutical industry

• Orthopedic implants

• Safety equipment

• Petrochemical industry

• Industrial valves

•Fixing and movable equipment

• Sanitary fittings

• General machinery

• Pumps and general connections

• Food and beverage processing

• Instrumentation equipment

Product Name:

Factory Custom Made As Drawing Parts Small Electric Motor Pto Shaft

Applicable Machining Process

CNC Machining/ Lathing/ Milling/ Turning/ Boring/ Drilling/ Tapping/
Broaching/Reaming /Grinding/Honing and etc.

Machining Tolerance

From 0.005mm-0.01mm-0.1mm

Machined Surface Quality

Ra 0.8-Ra3.2 according to customer requirement

Applicable Heat Treatment

T5~T6

MOQ for batch order

For cnc machining metal parts: 50 pcs

Lead Time

7-20 days for precision drilled shaft

Main Materials

Steel: carbon steel, alloy steel, stainless steel, 4140,20#,45# ,40Cr,20Cr ,etc

Aluminum: AL6061,AL6063,AL6082,AL7075,AL5052 etc.

Stainless steel: 201SS,301SS,304SS,316SS etc.

Brass: C37700,C28000, C11000,C36000 etc

Surface Treatment

Stainless Steel: Polishing, Passivating, Sandblasting, Laser engraving

Steel: Zinc plating, Oxide black, Nickel plating, Chrome platingk, Carburized, Powder Coated

Aluminum parts: Clear Anodized, Color Anodized, Sandblast Anodized, Chemical Film,Brushing,Polishing

Technical Support:
ZheJiang  Matech is professional at independent development and design. Our engineers are skilled at AUTO CAD, PRO ENGINEER, SOLID WORKS and other 2D & 3D softwares. We are able to design, develop,produce and deliver your PO according to your drawings, samples or just an idea. Dural control of standard products and OEM products.

Quality Control: 
1) Checking the raw material after they reach our factory——- Incoming quality control ( IQC) 
2) Checking the details before the production line operated 
3) Have full inspection and routing inspection during mass production—In process quality control(IPQC) 
4) Checking the goods after they are finished—- Final quality control(FQC) 
5) Checking the goods after they are finished—–Outgoing quality control(OQC)

Our Factory

                       ZheJiang CHINAMFG Machinery Manufacture Co., Ltd.
                                                    –Branch of CHINAMFG Industry Ltd. 

We specialize in Metal Parts Solution for Vehicle, Agriculture machine, Construction Machine, transportation equipment, Valve and Pump system. 

With keeping manufacturing process design, quality plHangZhou, key manufacturing processes and final quality control in house.
 We are mastering key competence to supply quality mechanical parts and assembly to our customers for both Chinese and Export Market.

To satisfy different mechanical and functional requirements from our customers we are making a big range of metal products for our clients on base of different blanks solutions and technologies.
These blanks solutions and technologies include processes of Iron Casting, Steel Casting, Stainless Steel Casting, Aluminum Casting and Forging. 

During the early involvement of the customer’s design process we are giving professional input to our customers in terms of process feasibility, cost reduction and function approach.
 
You are welcome to contact us for technical enquiry and business cooperation.

Our Certificate

Our Customer

Our Team

Our Package

Inner Packing →Strong & waterproof plastic big is packed inside, to keep the product in safe condition.Or as customer requests.

Outer Packing →Multilayer wooden box with strong bandages, used for standard export package. Or customized as per customer’s requirements.

Related Products


FAQ

1Q: Are you trading company or manufacturer?
A: We are a factory, so we can provide competitive price and fast delivery for you.

2Q: What kind of service can you provide?
A: Our company can provide custom casting, CNC machining, surface treatment according to your requirements.

3Q: What’s kinds of information you need for a quote?
A: In order to quote for you earlier, please provide us the following information together with your inquiry.
1. Detailed drawings (STEP, CAD, CHINAMFG Works, PROE, DXF and PDF)
2. Material requirement (SUS, SPCC, SECC, SGCC, Copper, AL, ETC.)
3. Surface treatment (powder coating, sand blasting, planting, polishing, oxidization, brushing, etc.)
4. Quantity (per order/ per month/ annual)
5. Any special demands or requirements, such as packing, labels, delivery, etc.

4Q: What shall we do if we do not have drawings?
A: Please send your sample to our factory, then we can copy or provide you better solutions. Please send us pictures or drafts with dimensions (Thickness, Length, Height, Width), CAD or 3D file will be made for you if placed order.

5Q: What makes you different from others?
A: 1. Our Excellent Service
We will submit the quotation in 48 hours if getting detailed information during working days.
2. Our quick manufacturing time
For Normal orders, we will promise to produce within 3 to 4 weeks.
As a factory, we can ensure the delivery time according to the formal contract.

6Q: Is it possible to know how are my products going on without visiting your company?
A: We will offer a detailed production schedule and send weekly reports with photos or videos which show the machining progress.

7Q: Can I have a trial order or samples only for several pieces?
A: As the product is customized and need to be produced, we will charge sample cost, but if the sample is not more expensive, we will refund the sample cost after you placed mass orders.

8Q: Why there is tooling cost?
A: It’s mold cost. Indispensable production process. Only need to pay for first order, and we will bear maintenance cost of mold damage.

9Q: What is your terms of payment?
A: Payment of sample order ≤ 1000USD, 100% T/T full payment.
Payment of tooling or batch order ≥ 5000USD, 70% T/T in advance, balance before shipment.

10Q: What’s your after-sale service?
A: If there is quality problem, please provide photos or test report, we will replace defective goods or return funds.

If you have any other questions please find us online, or send messages via email, WhatsApp for better communication! /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: Carbon Steel
Load: Customized Shafts
Stiffness & Flexibility: Flexible Shaft
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

pto shaft

What Factors Should Be Considered When Selecting the Appropriate PTO Spline Shaft?

When selecting the appropriate PTO (Power Take-Off) spline shaft, several factors need to be considered to ensure compatibility, performance, and reliability. The following are key factors that should be taken into account during the selection process:

1. Power Requirements:

One of the primary considerations is the power requirements of the application. This includes determining the required torque and rotational speed for the specific task or implement. The PTO spline shaft should be able to handle the maximum torque and speed demands without exceeding its design limits. It is important to select a shaft that matches or exceeds the power requirements to ensure reliable and efficient power transmission.

2. Shaft Size and Type:

The size and type of the PTO spline shaft should be compatible with both the power source (e.g., engine or motor) and the implement or equipment it will be connected to. This involves considering factors such as shaft diameter, length, and spline configuration. The shaft should have the appropriate dimensions and spline type to ensure proper fitment and engagement with both the power source and the driven component.

3. Spline Configuration:

The spline configuration of the shaft must match the requirements of the implement or equipment. This includes considering the number of splines, the shape of the splines (e.g., involute or straight-sided), and the dimensions of the splines (e.g., major diameter, minor diameter, and spline tooth form). It is essential to select a spline configuration that is compatible with the corresponding input and output shafts to ensure a secure and efficient power transmission.

4. Operating Environment:

The operating environment plays a crucial role in the selection of a suitable PTO spline shaft. Factors such as temperature, humidity, exposure to chemicals or corrosive substances, dust, and vibration should be taken into consideration. It is important to select a shaft that is constructed from materials and coatings that can withstand the specific environmental conditions and provide adequate protection against corrosion, wear, and other potential sources of damage.

5. Misalignment and Flexibility Requirements:

If the application involves misalignment between the power source and the driven component, such as in applications with articulation or maneuverability, the PTO spline shaft should have the necessary flexibility to accommodate such misalignment. This can be achieved through the use of universal joints or telescopic sections in the shaft design. The shaft should be able to handle the required degree of angular misalignment without compromising power transmission or causing excessive stresses on the drivetrain components.

6. Safety Considerations:

Safety is a critical factor when selecting a PTO spline shaft. It is important to consider any specific safety requirements or regulations that apply to the application or industry. Some PTO spline shafts may include safety features such as clutches or shear pins that provide overload protection and prevent damage to the equipment or drivetrain in case of excessive torque or sudden load changes. These safety features can help protect the operator, the equipment, and the shaft itself.

7. Manufacturer’s Recommendations and Standards:

It is advisable to consult the manufacturer’s recommendations and guidelines for selecting the appropriate PTO spline shaft. Manufacturers often provide detailed specifications, compatibility charts, and application guidelines to assist in the selection process. Additionally, adhering to industry standards and specifications, such as those set by organizations like the American Gear Manufacturers Association (AGMA), can ensure that the selected shaft meets the necessary quality and performance requirements.

8. Maintenance and Serviceability:

Consider the maintenance and serviceability aspects of the PTO spline shaft. A shaft that is easily accessible for inspection, lubrication, and potential repairs or replacements can contribute to the overall longevity and efficiency of the equipment. Additionally, availability of spare parts and support from the manufacturer or supplier should be considered to ensure ongoing support and maintenance of the PTO spline shaft.

By carefully considering these factors, it is possible to select the appropriate PTO spline shaft that meets the specific requirements of the application, ensuring compatibility, performance, and reliability in power transmission.

pto shaft

Are There Any Emerging Trends in PTO Spline Shaft Technology, Such as Material Advancements?

PTO (Power Take-Off) spline shaft technology has been evolving over the years, and there are indeed emerging trends, including advancements in materials, that are shaping the development of PTO spline shafts. These trends aim to improve performance, durability, efficiency, and overall functionality. Here’s a detailed look at some of the emerging trends in PTO spline shaft technology:

1. High-Strength Materials:

One of the significant trends in PTO spline shaft technology is the use of high-strength materials to enhance the shaft’s performance and durability. Advanced materials such as alloy steels, carbon steels, and heat-treated steels are being employed to increase the shaft’s strength, resistance to wear, and fatigue life.

These materials have excellent mechanical properties, including high tensile strength, hardness, and toughness, enabling PTO spline shafts to withstand heavy loads, torsional stresses, and harsh operating conditions. The use of high-strength materials ensures that the shafts can reliably transmit power and endure prolonged use without premature failure.

2. Surface Treatments and Coatings:

Surface treatments and coatings are also emerging as an important trend in PTO spline shaft technology. These treatments and coatings are applied to enhance the surface properties of the shafts, providing benefits such as increased corrosion resistance, improved wear resistance, and reduced friction.

Common surface treatments include nitriding, case hardening, and induction hardening. These processes modify the surface layer of the shaft, making it more resistant to wear and extending its service life. Additionally, coatings such as ceramic coatings or specialized polymer coatings can be applied to further enhance the shaft’s performance and protect it from environmental factors.

3. Precision Manufacturing and Machining:

Precision manufacturing and machining techniques are becoming increasingly important in PTO spline shaft production. Advanced machining technologies, including computer numerical control (CNC) machining and precision grinding, enable the production of highly accurate spline profiles and precise dimensional tolerances.

With precise manufacturing processes, PTO spline shafts can achieve better engagement with mating components, minimizing backlash, and ensuring efficient power transmission. The use of advanced manufacturing techniques also allows for more complex spline geometries, enabling customized designs to meet specific application requirements.

4. Design Optimization and Simulation:

Design optimization and simulation tools are playing a significant role in the development of PTO spline shafts. Computer-aided design (CAD) software and finite element analysis (FEA) simulations enable engineers to optimize the shaft’s design for improved strength, durability, and performance.

These tools allow for virtual testing and analysis of different design configurations, enabling the identification of potential issues and the refinement of the shaft’s geometry. By leveraging design optimization and simulation, PTO spline shafts can be tailored to specific load conditions and application requirements, resulting in enhanced reliability and efficiency.

5. Integration of Sensor Technology:

Another emerging trend in PTO spline shaft technology is the integration of sensor technology. Sensors can be integrated into the shaft assembly to monitor various parameters such as torque, speed, temperature, and vibration.

By collecting real-time data, these sensors provide valuable insights into the shaft’s performance, operating conditions, and potential issues. This information can be used for condition monitoring, predictive maintenance, and optimizing the overall system’s performance. The integration of sensor technology enhances the reliability and safety of PTO spline shafts by enabling proactive maintenance and minimizing the risk of unexpected failures.

6. Focus on Lightweight Design:

In certain applications, there is a growing emphasis on lightweight design in PTO spline shaft technology. By utilizing lightweight materials, such as aluminum alloys or composite materials, the overall weight of the shaft can be reduced without compromising its strength and performance.

Lightweight design offers benefits such as improved fuel efficiency, reduced vehicle weight, and increased payload capacity. For applications where weight is a critical factor, such as in aerospace or automotive industries, lightweight PTO spline shafts can contribute to overall system efficiency and performance.

These emerging trends in PTO spline shaft technology, including advancements in materials, surface treatments, precision manufacturing, design optimization, sensor integration, and lightweight design, are driving innovation and improving the performance, durability, and efficiency of PTO spline shafts. These trends enable the adaptation of PTO spline shafts to meet the evolving needs and demands of various industries and applications.

pto shaft

What Benefits Do PTO Spline Shafts Offer for Connecting Engines to Implements?

PTO (Power Take-Off) spline shafts offer several benefits when it comes to connecting engines to implements in various applications. These shafts provide a reliable and efficient means of transmitting power from the engine to the implement, enabling the implement to perform its intended tasks. Here’s a detailed explanation of the benefits that PTO spline shafts offer for connecting engines to implements:

1. Versatility and Compatibility:

PTO spline shafts are designed to provide a standardized and versatile connection interface between engines and implements. They are availablein various sizes, types, and spline configurations to accommodate different power requirements and implement designs. This versatility ensures compatibility between engines and implements from various manufacturers, allowing for seamless connections and interchangeability. The standardized nature of PTO spline shafts enables easy integration of different implements with a wide range of engines, promoting flexibility and adaptability in equipment usage.

2. Efficient Power Transfer:

One of the key benefits of PTO spline shafts is their ability to facilitate efficient power transfer from the engine to the implement. The splined connection between the shaft and the implement ensures a direct and secure power transmission path, minimizing energy losses and power dissipation. The large contact area created by the splines maximizes torque transmission efficiency, allowing the implement to receive the necessary power to perform its tasks effectively. This efficient power transfer results in optimized equipment performance and improved productivity.

3. Easy Connection and Disconnection:

PTO spline shafts offer a user-friendly and convenient method for connecting and disconnecting engines and implements. The splined connection allows for quick and easy attachment of the implement to the shaft, often with a sliding motion followed by a locking mechanism to secure the connection. This ease of connection and disconnection facilitates efficient implement changes, allowing operators to switch between different implements rapidly. Minimizing downtime during equipment setup or implement changes improves productivity and operational efficiency.

4. Load Handling Capability:

PTO spline shafts are designed to handle significant loads and transmit power reliably. The splines provide multiple contact points along the shaft, distributing the load evenly and reducing stress concentrations. This load distribution capability enhances the overall strength and durability of the connection, allowing the shaft to handle the torque and rotational forces generated by the engine. The robust construction of PTO spline shafts ensures that they can withstand demanding applications and heavy-duty tasks, providing long-lasting and reliable power transmission.

5. Safety and Operator Protection:

PTO spline shafts incorporate safety features that help protect operators and prevent accidents. For example, some PTO spline shafts include shear pins or a slip clutch mechanism to safeguard the implement and the operator in case of sudden overloads or obstructions. These safety features provide a sacrificial point of failure that can shear or slip, protecting the drivetrain and preventing damage to the equipment or injury to the operator. The inclusion of such safety mechanisms enhances the overall safety of the connection between engines and implements.

6. Reduced Maintenance and Downtime:

By offering a reliable and efficient power transmission solution, PTO spline shafts contribute to reduced maintenance needs and equipment downtime. The secure and direct connection minimizes wear and tear on the drivetrain components, reducing the frequency of maintenance and repair. Additionally, the ease of implement changes facilitated by PTO spline shafts allows for swift equipment reconfiguration, minimizing downtime between tasks or when switching between different implements. This operational efficiency translates into increased uptime and improved overall equipment availability.

7. Cost-Effectiveness:

PTO spline shafts provide a cost-effective solution for connecting engines to implements. Their standardized design and widespread availability make them readily accessible, reducing the need for custom-made or proprietary connection systems. Furthermore, the efficient power transfer and reduced maintenance requirements contribute to cost savings in terms of fuel consumption, repair and maintenance expenses, and overall equipment lifecycle costs. The cost-effectiveness of PTO spline shafts makes them a preferred choice for connecting engines to implements in various industries and applications.

In summary, PTO spline shafts offer several benefits when it comes to connecting engines to implements. They provide versatility and compatibility, ensure efficient power transfer, enable easy connection and disconnection, handle heavy loads, enhance safety, reduce maintenance needs, and offer cost-effectiveness. These advantages make PTO spline shafts an essential component in power transmission systems, enabling reliable and effective connections between engines and implements in a wide range of applications.

China Custom Factory Custom Made as Drawing Parts Small Electric Motor Pto Shaft Pto Spline ShaftChina Custom Factory Custom Made as Drawing Parts Small Electric Motor Pto Shaft Pto Spline Shaft
editor by CX 2024-05-07